Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(4): 106256, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36845030

RESUMEN

Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.

2.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220039, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633281

RESUMEN

Anthranilate phosphoribosyltransferase catalyses the second reaction in the biosynthesis of tryptophan from chorismate in microorganisms and plants. The enzyme is homodimeric with the active site located in the hinge region between two domains. A range of structures in complex with the substrates, substrate analogues and inhibitors have been determined, and these have provided insights into the catalytic mechanism of this enzyme. Substrate 5-phospho-d-ribose 1-diphosphate (PRPP) binds to the C-terminal domain and coordinates to Mg2+, in a site completed by two flexible loops. Binding of the second substrate anthranilate is more complex, featuring multiple binding sites along an anthranilate channel. This multi-modal binding is consistent with the substrate inhibition observed at high concentrations of anthranilate. A series of structures predict a dissociative mechanism for the reaction, similar to the reaction mechanisms elucidated for other phosphoribosyltransferases. As this enzyme is essential for some pathogens, efforts have been made to develop inhibitors for this enzyme. To date, the best inhibitors exploit the multiple binding sites for anthranilate. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Antranilato Fosforribosiltransferasa , ortoaminobenzoatos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Sitios de Unión , Dominio Catalítico , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
3.
Biochemistry ; 61(17): 1883-1893, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35969806

RESUMEN

Enzyme-catalyzed hydrolysis is a fundamental chemical transformation involved in many essential metabolic processes. The enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolysis of adenosine-containing metabolites in cysteine and methionine metabolism. Although MTAN enzymes contain highly similar active site architecture and generally follow a dissociative (DN*AN) reaction mechanism, substantial differences in reaction rates and chemical transition state structures have been reported. To understand how subtle changes in sequence and structure give rise to differences in chemistry between homologous enzymes, we have probed the reaction coordinates of two MTAN enzymes using quantum mechanical/molecular mechanical and molecular dynamics simulations combined with experimental methods. We show that the transition state structure and energy are significantly affected by the recruitment and positioning of the catalytic water molecule and that subtle differences in the noncatalytic active site residues alter the environment of the catalytic water, leading to changes in the reaction coordinate and observed reaction rate.


Asunto(s)
N-Glicosil Hidrolasas , Agua , Catálisis , Desoxiadenosinas , Hidrólisis , N-Glicosil Hidrolasas/química , Purina-Nucleósido Fosforilasa , Tionucleósidos
4.
Nat Commun ; 11(1): 1912, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313256

RESUMEN

Metal-containing formate dehydrogenases (FDH) catalyse the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active site. They display a diverse subunit and cofactor composition, but structural information on these enzymes is limited. Here we report the cryo-electron microscopic structures of the soluble Rhodobacter capsulatus FDH (RcFDH) as isolated and in the presence of reduced nicotinamide adenine dinucleotide (NADH). RcFDH assembles into a 360 kDa dimer of heterotetramers revealing a putative interconnection of electron pathway chains. In the presence of NADH, the RcFDH structure shows charging of cofactors, indicative of an increased electron load.


Asunto(s)
Microscopía por Crioelectrón/métodos , Formiato Deshidrogenasas/química , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Catálisis , Dominio Catalítico , Modelos Moleculares , Molibdeno/química , NAD/química , NAD/metabolismo , Oxidación-Reducción , Tungsteno
5.
Biophys J ; 116(10): 1887-1897, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31053263

RESUMEN

Allosteric regulation plays an important role in the control of metabolic flux in biosynthetic pathways. In microorganisms, many enzymes in these pathways adopt different strategies of allostery to allow the tuning of their activities in response to metabolic demand. Thus, it is important to uncover the mechanism of allosteric signal transmission to fully comprehend the complex control of enzyme function and its evolution. ATP-phosphoribosyltransferase (ATP-PRT), as the first enzyme in the histidine biosynthetic pathway, is allosterically regulated by histidine and offers a good platform for the study of allostery. Two forms of ATP-PRT, namely long and short forms, were discovered that show different arrangements of their regulatory machinery. Crystal structures of the long-form ATP-PRT have revealed overall conformational changes in the inhibited state, but the observed changes in the active state are quite subtle, making the elucidation of its allosteric mechanism difficult. Here, we combine computational methods (ligand docking, quantum mechanics/molecular mechanics optimization, and molecular dynamic simulations) with experimental studies to probe the signal transmission between remote allosteric and active sites. Our results reveal that distinct conformational ensembles of the catalytic domain with different dynamic properties exist in the ligand-free and histidine-bound enzymes. These ensembles display different capabilities in supporting the catalytic and allosteric function of ATP-PRT. The findings give insight into the underlying mechanism of allostery and allow us to propose that the hinge twisting within the catalytic domain is the key for both enhancement of catalysis and provision of regulation in ATP-PRT enzymes.


Asunto(s)
ATP Fosforribosil Transferasa/química , ATP Fosforribosil Transferasa/metabolismo , Biocatálisis , Histidina/biosíntesis , Regulación Alostérica , Dominio Catalítico , Simulación de Dinámica Molecular
6.
Biochem J ; 475(1): 247-260, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208762

RESUMEN

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.


Asunto(s)
ATP Fosforribosil Transferasa/química , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Campylobacter jejuni/enzimología , ATP Fosforribosil Transferasa/genética , ATP Fosforribosil Transferasa/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
7.
FEBS Lett ; 590(16): 2603-10, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27393206

RESUMEN

ATP-phosphoribosyltransferase (ATP-PRT) catalyses the first step of histidine biosynthesis. Two different forms of ATP-PRT have been described; the homo-hexameric long form, and the hetero-octameric short form. Lactococcus lactis possesses the short form ATP-PRT comprising four subunits of HisGS , the catalytic subunit, and four subunits of HisZ, a histidyl-tRNA synthetase paralogue. Previous studies have suggested that HisGS requires HisZ for catalysis. Here, we reveal that the dimeric HisGS does display ATP-PRT activity in the absence of HisZ. This result reflects the evolutionary relationship between the long and short form ATP-PRT, which acquired allosteric inhibition and enhanced catalysis via two divergent strategies.


Asunto(s)
ATP Fosforribosil Transferasa/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Isoformas de Proteínas/metabolismo , ATP Fosforribosil Transferasa/química , ATP Fosforribosil Transferasa/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico/genética , Histidina/química , Histidina/metabolismo , Lactococcus lactis/enzimología , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
8.
Protein Sci ; 25(8): 1492-506, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27191057

RESUMEN

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.


Asunto(s)
ATP Fosforribosil Transferasa/química , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Campylobacter jejuni/química , Histidina/química , ATP Fosforribosil Transferasa/genética , ATP Fosforribosil Transferasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Unión Competitiva , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Mutación , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
9.
Curr Opin Struct Biol ; 29: 102-11, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25543886

RESUMEN

Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a ßαßßαß topology leading to a four-stranded ß4ß1ß3ß2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.


Asunto(s)
Regulación Alostérica , Aminoácidos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
10.
Arch Biochem Biophys ; 537(2): 185-91, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23916589

RESUMEN

One of the novel aspects of kiwifruit is the presence of a high level of quinic acid which contributes to the flavour of the fruit. Quinic acid metabolism intersects with the shikimate pathway, which is responsible for the de novo biosynthesis of primary and secondary aromatic metabolites. The gene encoding the enzyme which catalyses the second step of the shikimate pathway, dehydroquinate synthase (DHQS), from the New Zealand kiwifruit Actinidia chinensis was identified, cloned and expressed. A. chinensis DHQS was activated by divalent metal ions, and was found to require NAD(+) for catalysis. The protein was crystallised and the structure was solved, revealing a homodimeric protein. Each monomer has a NAD(+) binding site nestled between the distinct N- and C-terminal domains. In contrast to other microbial DHQSs, which show an open conformation in the absence of active site ligands, A. chinensis DHQS adopts a closed conformation. This is the first report of the structure of a DHQS from a plant source.


Asunto(s)
Actinidia/enzimología , Frutas/enzimología , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/ultraestructura , Ácido Quínico/química , Secuencia de Aminoácidos , Activación Enzimática , Estabilidad de Enzimas , Cinética , Datos de Secuencia Molecular , Nueva Zelanda , Conformación Proteica , Especificidad por Sustrato
11.
J Biol Chem ; 284(33): 21891-21898, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19542235

RESUMEN

We have purified and characterized a specific CTP:molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22% amino acid sequence identity to E. coli MobA, the specific GTP:molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase YagTSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37+/-0.01 min(-1) was obtained. A 1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23+/-0.02 microm for CTP and 1.17+/-0.18 microm for Mo-MPT. We showed that MocA was also able to convert MPT to MCD in the absence of molybdate, however, with only one catalytic turnover. The addition of molybdate after one turnover gave rise to a higher MCD production, revealing that MCD remains bound to MocA in the absence of molybdate. This work presents the first characterization of a specific enzyme involved in MCD biosynthesis in bacteria.


Asunto(s)
Nucleótidos de Citosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Pterinas/metabolismo , Adenosina Trifosfato/metabolismo , Aldehído Oxidorreductasas/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Modelos Biológicos , Mutación , Unión Proteica , Factores de Tiempo , Xantina Deshidrogenasa/metabolismo
12.
FEBS J ; 276(10): 2762-74, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19368556

RESUMEN

Three DNA regions carrying genes encoding putative homologs of xanthine dehydrogenases were identified in Escherichia coli, named xdhABC, xdhD, and yagTSRQ. Here, we describe the purification and characterization of gene products of the yagTSRQ operon, a molybdenum-containing iron-sulfur flavoprotein from E. coli, which is located in the periplasm. The 135 kDa enzyme comprised a noncovalent (alpha beta gamma) heterotrimer with a large (78.1 kDa) molybdenum cofactor (Moco)-containing YagR subunit, a medium (33.9 kDa) FAD-containing YagS subunit, and a small (21.0 kDa) 2 x [2Fe2S]-containing YagT subunit. YagQ is not a subunit of the mature enzyme, and the protein is expected to be involved in Moco modification and insertion into YagTSR. Analysis of the form of Moco present in YagTSR revealed the presence of the molybdopterin cytosine dinucleotide cofactor. Two different [2Fe2S] clusters, typical for this class of enzyme, were identified by EPR. YagTSR represents the first example of a molybdopterin cytosine dinucleotide-containing protein in E. coli. Kinetic characterization of the enzyme revealed that YagTSR converts a broad spectrum of aldehydes, with a preference for aromatic aldehydes. Ferredoxin instead of NAD(+) or molecular oxygen was used as terminal electron acceptor. Complete growth inhibition of E. coli cells devoid of genes from the yagTSRQ operon was observed by the addition of cinnamaldehyde to a low-pH medium. This finding shows that YagTSR might have a role in the detoxification of aromatic aldehydes for E. coli under certain growth conditions.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Coenzimas/metabolismo , Nucleótidos de Citosina/metabolismo , Escherichia coli/enzimología , Metaloproteínas/metabolismo , Periplasma/enzimología , Pteridinas/metabolismo , Pterinas/metabolismo , Acroleína/análogos & derivados , Acroleína/metabolismo , Cromatografía en Gel , Nucleótidos de Citosina/química , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Cinética , Cofactores de Molibdeno , Operón , Pterinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...